Extensions 1→N→G→Q→1 with N=C2 and Q=C22×M4(2)

Direct product G=N×Q with N=C2 and Q=C22×M4(2)
dρLabelID
C23×M4(2)64C2^3xM4(2)128,2302


Non-split extensions G=N.Q with N=C2 and Q=C22×M4(2)
extensionφ:Q→Aut NdρLabelID
C2.1(C22×M4(2)) = C22×C8⋊C4central extension (φ=1)128C2.1(C2^2xM4(2))128,1602
C2.2(C22×M4(2)) = C2×C4×M4(2)central extension (φ=1)64C2.2(C2^2xM4(2))128,1603
C2.3(C22×M4(2)) = C22×C22⋊C8central extension (φ=1)64C2.3(C2^2xM4(2))128,1608
C2.4(C22×M4(2)) = C22×C4⋊C8central extension (φ=1)128C2.4(C2^2xM4(2))128,1634
C2.5(C22×M4(2)) = C2×C42.12C4central extension (φ=1)64C2.5(C2^2xM4(2))128,1649
C2.6(C22×M4(2)) = C2×C24.4C4central stem extension (φ=1)32C2.6(C2^2xM4(2))128,1609
C2.7(C22×M4(2)) = C2×C4⋊M4(2)central stem extension (φ=1)64C2.7(C2^2xM4(2))128,1635
C2.8(C22×M4(2)) = C2×C42.6C4central stem extension (φ=1)64C2.8(C2^2xM4(2))128,1650
C2.9(C22×M4(2)) = C42.677C23central stem extension (φ=1)32C2.9(C2^2xM4(2))128,1652
C2.10(C22×M4(2)) = C2×C89D4central stem extension (φ=1)64C2.10(C2^2xM4(2))128,1659
C2.11(C22×M4(2)) = C2×C86D4central stem extension (φ=1)64C2.11(C2^2xM4(2))128,1660
C2.12(C22×M4(2)) = D4×M4(2)central stem extension (φ=1)32C2.12(C2^2xM4(2))128,1666
C2.13(C22×M4(2)) = C2×C84Q8central stem extension (φ=1)128C2.13(C2^2xM4(2))128,1691
C2.14(C22×M4(2)) = Q8×M4(2)central stem extension (φ=1)64C2.14(C2^2xM4(2))128,1695
C2.15(C22×M4(2)) = C42.290C23central stem extension (φ=1)64C2.15(C2^2xM4(2))128,1697
C2.16(C22×M4(2)) = D46M4(2)central stem extension (φ=1)64C2.16(C2^2xM4(2))128,1702
C2.17(C22×M4(2)) = Q86M4(2)central stem extension (φ=1)64C2.17(C2^2xM4(2))128,1703
C2.18(C22×M4(2)) = C233M4(2)central stem extension (φ=1)32C2.18(C2^2xM4(2))128,1705
C2.19(C22×M4(2)) = D47M4(2)central stem extension (φ=1)32C2.19(C2^2xM4(2))128,1706
C2.20(C22×M4(2)) = C42.693C23central stem extension (φ=1)32C2.20(C2^2xM4(2))128,1707
C2.21(C22×M4(2)) = C42.302C23central stem extension (φ=1)64C2.21(C2^2xM4(2))128,1715
C2.22(C22×M4(2)) = Q8.4M4(2)central stem extension (φ=1)64C2.22(C2^2xM4(2))128,1716
C2.23(C22×M4(2)) = C42.698C23central stem extension (φ=1)64C2.23(C2^2xM4(2))128,1721
C2.24(C22×M4(2)) = D48M4(2)central stem extension (φ=1)64C2.24(C2^2xM4(2))128,1722
C2.25(C22×M4(2)) = Q87M4(2)central stem extension (φ=1)64C2.25(C2^2xM4(2))128,1723

׿
×
𝔽